SERIES F-E / SERIES F-NSF PUSH-IN FITTINGS FOR USE IN THE FOOD INDUSTRY

These fittings are made of materials suitable for use in the food industry. They can also be used with hot and cold tap water.
All brass component parts undergo a clean-lead process, which consists of removing lead from the surface layer of the fitting; the gaskets are made of special FDA-approved Viton® ${ }^{\circledR}$. These fittings do not contain technopolymers, thereby avoiding problems of compatibility with detergents and other chemical agents. This choice of materials allows the fittings to be used up to $150^{\circ} \mathrm{C}$, which makes them suitable for other hightemperature applications, in addition to the food industry.
The threads are cylindrical and under-head O-rings provide a pneumatic seal. This avoids the need for sealants (e.g. Teflon${ }^{\text {® }}$), which could release solid fragments during screwing and unscrewing that would contaminate the environment or the fluid. Our fittings can be screwed and unscrewed any number of times and still remain clean and pneumatically sealed.
This choice of materials and treatments make these fittings suitable for use in the chemical, pharmaceutical, medical and electronics industry. The filtings are available in two series:

- Series F-E fittings are made of brass that undergoes a surface clean-lead process, followed by a surface coating with inter-metal alloy compound; they comply with regulatory standards applicable in Europe and other world countries for use in contact with foodstuffs or drinking water.
- Series F-NSF fittings are made of brass with a low-lead content ($\leq 0.2 \%$) that undergoes a further surface clean-lead process in compliance with US standards, and are certified to NSF169 and NSF61 standards.
A standard range of fittings is available, but other designs can be developed on specific request.

TECHNICAL DATA	
Threaded port	
Pipe diameter	mm
Temperature range	${ }^{\circ} \mathrm{C}$
	${ }^{\circ} \mathrm{F}$

Pressure range
Recommended pipe

COMPONENTS

SERIES F-E

(1) Body: unleaded brass treated with environmentally-friendly intermetallic alloy
(2) Gripper: unleaded brass treated with environmentally-friendly intermetallic alloy
(3) Seal: FDA-approved Viton ${ }^{\circledR}$
(4) Port seal: FDA-approved Viton ${ }^{\circledR}$

SERIES F-E	SERIES F-NSF
M5-G1/8" - G1/4" - G3/8" - G1/ $\mathbf{2}^{\prime \prime}$	
Ø 4-Ø6-Ø 8-Ø10	
-20 to +150	
- 4 to 302	
- 0.99 bar to $16 \mathrm{bar} /-0.099 \mathrm{MPa}$ to 1.6 MPa	
1 - Nylon 6 - Polyamide 12 -	PTFE
olypropylene - PTFE	

Polypropylene - PTFE

ADVANTAGES / CERTIFICATIONS

SERIES F-E

ADVANTAGES

Under-head O-ring

Can be screwed and unscrewed any number of times; no fragments of Teflon ${ }^{\circledR}$ or sealant will contaminate the fluid.

Corrosion resistance

The intermetallic alloy deposited on the surface and Viton ${ }^{\oplus}$ are compatible with numerous substances.

No plastic parts

No risk of incompatibility.

CONFORMITY DECLARATIONS

- Regulation 1935/04 EU.
- Regulation 2023/06 EU.

SERIES F-NSF

ADVANTAGES

Under-head O-ring

Can be screwed and unscrewed any number of times; no fragments of Teflon ${ }^{\circledR}$ or sealant will contaminate the fluid.

No plastic parts

No risk of incompatibility.

CERTIFICATIONS

- NSF/ANSI 169: products in contact with food.
- NSF/ANSI 61: products in contact with drinking water.

More specifically, they are certified according to section 4 in the "commercial hot $82 \mathrm{C}^{\prime \prime}$ category, which is the most restrictive and includes the following subcategories:

- Domestic cold temperature
- Domestic hot temperature
- Commercial hot temperature
- Environment pH5.

CONFORMITY DECLARATIONS

- DM 174
- Regulation 1935/04 EU.
- Regulation 2023/06 EU.

INSTALLING THE PIPE

Compressed air pipes must be used in compliance with some basic criteria in order to ensure long life and proper operation of the fitting:

- check that the conditions for the installation and use (e.g. temperature and fluid used) comply with the characteristics stated by the pipe manufacturer;
- check the pipe size; oversized pipes could not fit properly, undersized ones could not ensure pipe retention and air tightness.

The cut should be as accurate as possible at a right angle with the pipe axis.

- the bending radius of the pipe installed must be as wide as possible. The fittings have been designed to ensure axial seal of the pipe; excessive curvature could considerably shorten the life of the pipe.
- the pipe must not be subjected to excessive axial stress and it must be of the right length for snugly fitting (not too long or too short).
- correct insertion of the pipe into the fitting is essential for air tightness and pipe retention. Make sure that the pipe is pushed right into the seat.
- check that the pipe does not encounter any obstacles or blockages along its way, which could cause tensile stress of the pipe in the fitting.

STRAIGHT, CYLINDRICAL, MALE RI F

STRAIGHT, CONICAL, MALE RIC F

		Series F-E		Series F-NSF			F	Ch	Chl	P	L	D	E
		Code	Ref.	Code	Ref.	\varnothing							
		2FO1CO2	RICF-E	2FO1C52	RIC F-NSF	4	1/8	10	2.5	6.2	20.5	3.1	11.5
	-	$2 \mathrm{FO1C07}$	RICF-E	2FO1C57	RIC F-NSF	6	1/8	12	4	6.2	24	4.2	13.8
	通	2F01C08	RICF-E	2F01C58	RIC F-NSF	6	1/4	14	4	8.5	25.5	4.2	16
	-	2FO1C09	RICF-E	2FO1C59	RIC F-NSF	8	1/8	14	5	6.2	27.5	5.2	16
	${ }^{\text {chl }}$	2 FOlCl	RICF-E	2FO1C60	RIC F-NSF	8	1/4	14	6	8.5	27.5	6.2	16
	\bigcirc	$2 \mathrm{FOlCl1}$	RICF-E	$2 \mathrm{FO1C61}$	RIC F-NSF	8	3/8	17	6	9	27	6.2	19.6
	D.	$2 \mathrm{FO1Cl} 3$	RICF-E	$2 F 01 C 63$	RIC F-NSF	10	1/4	17	7	8.5	34.5	7.2	19.6
	F	$2 \mathrm{FO1C14}$	RIC F-E	2FO1C64	RIC F-NSF	10	3/8	17	7	9	30.5	7.2	19.6

STRAIGHT, FEMALE R2 F

Series F-E Series F-NSF

Code	Ref.	Code	Ref.	\varnothing	F	Ch	P	L	D	E
2F02001	R2 F-E	2F02051	R2 F-NSF	4	$1 / 8$	10	7	27	3	14
2F02005	R2 F-E	2F02055	R2 F-NSF	6	$1 / 8$	13	7	30	5	15
2F02006	R2 F-E	2F02056	R2 F-NSF	6	$1 / 4$	13	8	32	5	17
2F02007	R2 F-E	2F02057	R2 F-NSF	8	$1 / 8$	14	7	30	7	17
2F02008	R2 F-E	2FO2058	R2 F-NSF	8	$1 / 4$	14	8	32	7	17
2F02011	R2 F-E	2F02061	R2 F-NSF	10	$1 / 4$	17	8	35	9	20

STRAIGHT, INTERMEDIATE R3 F

ELBOW, INTERMEDIATE R4 F

TEE, INTERMEDIATE R5 F

THREADED ADAPTER R6 F

	$-\frac{\varnothing}{D}$	Series F-E		Series F-NSF			F	Ch	P	L	D	E
		Code	Ref.	Code	Ref.	\varnothing						
		$2 \mathrm{FO6001}$	R6 F-E	2 F 06051	R6 F-NSF	4	M5	8	4	25.2	2.5	9
		2 F 06002	R6 F-E	2 F 06052	R6 F-NSF	4	1/8	13	6	28.9	2.5	15
	-	$2 F 06003$	R6 F-E	$2 F 06053$	R6 F-NSF	4	1/4	14	8	32.4	2.2	18
		$2 F 06000$	R6 F-E	$2 F 06050$	R6 F-NSF	6	M5	9	4	25.7	2.7	10
		$2 F 06007$	R6 F-E	$2 F 06057$	R6 F-NSF	6	1/8	13	6	29.4	4	15
	T-	$2 F 06008$	R6 F-E	$2 F 06058$	R6 F-NSF	6	1/4	14	8	32.9	4	18
	0	$2 F 06009$	R6 F-E	$2 F 06059$	R6 F-NSF	8	1/8	13	6	30.6	5.5	15
	- \square°	$2 F 06010$	R6 F-E	$2 F 06060$	R6 F-NSF	8	1/4	14	8	34	6	18
	F	$2 F 06011$	R6 F-E	$2 F 06061$	R6 F-NSF	8	3/8	17	9	35.4	6	22
		$2 F 06012$	R6 F-E	$2 F 06062$	R6 F-NSF	10	1/4	14	8	35.6	7.8	18
		$2 F 06013$	R6 F-E	$2 F 06063$	R6 F-NSF	10	3/8	17	9	37.1	8	22

STRAIGHT, INTERMEDIATE, BULKHEAD UNIONS R10 F

ROTARY ELBOW, MALE, CYLINDRICAL R31 F

	Series F-E		Series F-NSF									
	Code	Ref.	Code	Ref.	\varnothing	F	Ch	E	E1	L	11	p
	$2 F 31001$	R31 F-E	2 231051	R31 F-NSF	4	M5	9	9	10	21	19	4
	2 231002	R31 F-E	2 231052	R31 F-NSF	4	1/8	13	15	10	21	21	6
	2 F 31003	R31 F-E	2 231053	R31 F-NSF	4	1/4	16	18	10	21	25	8
	$2 F 31007$	R31 F-E	2 231057	R31 F-NSF	6	M5	9	8	11.8	24	17.5	
	$2 F 31008$	R31 F-E	2 231058	R31 F-NSF	6	1/8	13	15	12.5	24	21	
	2F31009	R31 F-E	2 231059	R31 F-NSF	6	1/4	16	18	12.5	25.5	25	8
	2 231010	R31 F-E	2 231060	R31 F-NSF	8	1/8	13	15	14	26	22.5	
	2 231011	R31 F-E	2 2F31061	R31 F-NSF	8	1/4	16	18	14	26	25	8
	2 231012	R31 F-E	2 F31062	R31 F-NSF	8	3/8	19	22	14	27.5	30.5	9
	2 2F31013	R31 F-E	2 231063	R31 F-NSF	10	1/4	16	18	16.5	30	27	8
	2 231014	R31 F-E	2 231064	R31 F-NSF	10	3/8	19	22	16.5	30	30.5	
	2 F 31015	R31 F-E	2 231065	R31 F-NSF	10	1/2	22	26	16.5	31	32	

ROTARY ELBOW, MALE, CONICAL R3IC F

CENTRAL TEE, MALE, CYLINDRICAL, ROTARY R32 F

Series F-E	
Code	Ref.
2F32002	R32F-E
2F32008	R32F-E
2F32009	R32F-E
2F32010	R32F-E
2F32011	R32F-E
2F32012	R32FE
2F32013	R32FE
2F32014	R32F-E

Series F-NSF									
Code	Ref.	$\boldsymbol{\varnothing}$	F	Ch	E	E1	L	L1	P
2F32052	R32 F-NSF	4	$1 / 8$	13	15	10	41.5	21	6
2F32058	R32 F-NSF	6	$1 / 8$	13	15	12.5	47.5	21	6
2F32059	R32 F-NSF	6	$1 / 4$	16	18	12.5	50.5	25	8
2F32060	R32 F-NSF	8	$1 / 8$	13	15	14	52	22.5	6
2F32061	R32 F-NSF	8	$1 / 4$	16	18	14	52	25	8
2F32062	R32 F-NSF	8	$3 / 8$	19	22	14	56	30.5	9
2F32063	R32 F-NSF	10	$1 / 4$	16	18	16.5	60.5	27	8
2F32064	R32 F-NSF	10	$3 / 8$	19	22	16.5	60.5	30.5	9

LATERAL TEE, MALE, CYLINDRICAL, ROTARY R38 F

Series F-E Series F-NSF
Code Ref. Code Re 2 238002 R38 F-E 2 238008 R38 F-E
$2 F 38010$ R38 F-E $2 F 38060$ R38 F-NSF
$2 F 38011$ R38 F-E $2 F 38061$ R38 F-NSF
$2 F 38013$ R38 F-E $2 F 38063$ R38 F-NSF
$\begin{array}{llllllllllll}2 F 38014 & \text { R38 F-E } & 2 F 38064 & \text { R38 F-NSF } & 10 & 3 / 8 & 19 & 22 & 17 & 31.5 & 30.5 & 9\end{array}$

ELBOW, MALE, CONICAL R39 F

